

Interaction of dislocations and point defects Influence on defect patterning

Hartmut S. Leipner

Interdisziplinäres Zentrum für Materialwissenschaften – Nanotechnikum Weinberg –

Martin-Luther-Universität Halle–Wittenberg

© All rights reserved CMAT Halle 2012

 \bigcirc

Dislocation patterning

Double-crystal topography of dislocation cells in LEC-grown (001) GaAs. Cu K**\alpha_1** radiation, 511 reflection. [W. Leitenberger] Etch-pit pattern of the dislocation distribution in multi-crystalline silicon [D. Oriwol]

Dislocation distribution \leftrightarrow **Variation in electrical/optical properties**

Role of intrinsic point defects and impurities

Core structure of dislocations

60° dislocation in the diamond structure, $\boldsymbol{b} = \frac{a}{2} \langle 110 \rangle$. [Shockley 1953]

"Ptolemaic" picture of dislocations

Dissociation

Dissociation of a perfect 60° dislocation in the diamond structure into a 30° and a 90° partial. The Shockley partial dislocations, $\boldsymbol{b} = \frac{\boldsymbol{a}}{6} \langle 211 \rangle$, are separated by a stacking fault.

Reconstruction

Unreconstructed and reconstructed 30° partial

Jog dragging

Jog dragging at screw dislocations and point defect emission

TEM Staab HS Leipner et al Phys Rev Lett 83 (1999) 5519

Formation of a trail of vacancy clusters

Number of point defects

$$c = \frac{1}{\Omega} \frac{\boldsymbol{\xi}_1 \cdot \boldsymbol{u} \times \boldsymbol{\xi}_2}{|\boldsymbol{\xi}_1 \cdot \boldsymbol{u} \times \boldsymbol{\xi}_2|} \boldsymbol{b}_1 \cdot \boldsymbol{u} \times \boldsymbol{b}_2$$

(per unit step from the cutting of two screws)

Agglomerations of vacancies as a result of jog dragging at screw dislocations

Plastic deformation

Positron annihilation measurements and density functional tight binding calculations

- Long positron lifetime due to large vacancy agglomerations
- Stable vacancy clusters V₆, V₁₀, V₁₄
- Magic numbers of stable clusters: n = 4i + 2, i = 1, 2, 3, ...

TEM Staab HS Leipner et al Phys Rev Lett 83 (1999) 5519

Interstitials

The type of the point defects emitted depends on the sign of the jog

Interstitials

Interstitial loops surrounding a dislocation in GaAs

Extended jog

Structure of an extended jog in the acute-angle configuration on the screw **DB**. The X–Y cut illustrates the dissociation of the jog in a Shockley and a Frank partial (Burgers vectors **βD** and **Bβ**). The latter one has a pure edge character and can only follow the glide motion of the screw by the emission or absorption of point defects.

HS Leipner et al J Phys Cond Mat 12 (2000) 10071

Superjogs

Formation of edge dipoles and prismatic dislocation loops

Cottrell atmosphere of impurities

Equilibrium case from elastic interaction

Distribution of impurities about an edge dislocation for time $t \rightarrow \infty$

$$C(r) = C_{\rm eq} \exp\left(-\frac{\beta \sin \theta}{r k_{\rm B} T}\right) \qquad \beta = \frac{G b_{\rm e}}{3\pi} \frac{1+\nu}{1-\nu} \Delta V$$

Distribution of copper at a 60° dislocation in GaAs for different solubilities C_{eq}

HS Leipner *et al* Phil Mag A **79** (1999) 2785

Distribution of charge carriers

10 µm

Density of free carriers *n* measured by confocal Raman microscopy at dislocations in GaAs:Si (*left*) and GaAs:S (*right*)

Decorated dislocations

Decorated dislocations with a bright cathodoluminescence contrast in GaAs after copper in-diffusion. The bright contrast is due to the 1.36 eV emission related to Cu_{Ga} acceptors.

HS Leipner et al Mater Sci Eng B 42 (1996) 185

Microscopic processes at dislocations

 Elastic interaction of point defects and dislocations

$$\Phi(r) = -\frac{A}{r}\sin\theta$$

Diffusion of point defects,
 e. g. via kick-out or vacancy mechanism

 $X_i \rightleftarrows X_s + I$

- Segregation in the core $X_i \rightleftharpoons p$ • Fermi-level effect $\frac{C_{X^z}}{C_{n_i}} = \left(\frac{n}{n_i}\right)^z$
 - Diffusion-drift-aggregation (DDA) model

 Formation of dislocation loops from supersaturated point defects

 $I \rightleftarrows \ell$

 Formation of defect complexes (intrinsic point defects/impurities)

 $X_s + V \rightleftharpoons X_s V$

Diffusion-drift-aggregation model

HS Leipner *et al* Phil Mag A 79 (1999) 2785

Non-equilibrium atmosphere

 Homogeneous formation of precipitates only inside a cylinder with the radius r₀ about the dislocation core

$$\gamma = \left\{ \begin{array}{c} 1 & \text{for } r < r_0 \\ 0 & r > r_0 \end{array} \right.$$

 Nucleation rate according to classical nucleation theory in the dislocation region

$$\Psi = 4\pi r_0 C(r,t)^2 D \exp\left(-\frac{16}{3} \frac{\sigma^3 V^2}{k_{\rm B} T (k_{\rm B} T \ln \Sigma)^2}\right)$$

(σ interface energy, *V* atomic volume, Σ supersaturation)

see R Bullough, R Newman Proc Royal Soc A 198 (1962) 209, 266

Arsenic precipitates at dislocations in GaAs

Laser scattering tomography of dislocations in vapor-controlled Czochralski-grown GaAs [M Naumann 2005]

Arsenic precipitates at dislocations in GaAs

Arsenic precipitation not homogeneous along the core
Decoration of the core?

TEM bright field image of a dislocation decorated with an arsenic precipitate

HS Leipner H Lei phys stat sol (c) 2 (2005) 1859

Simulation of the distribution of carriers

- From the DDA model: variation of the concentration of defects (interstitials, charged vacancies, impurities, complexes
- Calculation of the local carrier concentration

Distribution of free carriers at a 60° dislocation in GaAs:S without and with consideration of native point defects and the precipitation of arsenic

HS Leipner H Lei phys stat sol (c) 2 (2005) 1859

Cathodoluminescence of dislocations in GaN

Cathodoluminescence microscopy ($U_b = 10$ kV, $I_b \approx 15$ nA) of in-grown and fresh dislocations in gallium nitride single crystals grown by hydride vapor phase epitaxy

Cathodoluminescence of dislocations in GaN

Contrast	In-grown dislocations	Fresh dislocations
C _{max} (%)	36 ± 1	35 ± 1
<i>FWHM</i> (µm)	1.45 ± 0.12	1.31 ± 0.09

Cathodoluminescence microscopy ($U_b = 10$ kV, $I_b \approx 15$ nA) of in-grown and fresh dislocations in gallium nitride single crystals grown by hydride vapor phase epitaxy

Contrast similar but distinct differences in mobility

Conclusions

- Straight, perfect dislocation line hardly exists
- Complicated set of core defects;
 generation of intrinsic point defects
- ◆ Hardly to separate in spectroscopic measurements different types of defects in the bulk, in the strain field of the dislocation, and in the core → local analysis necessary
- An extended defect zone, characterized by the depletion or accumulation of various point defects, is formed around dislocations.
- Electrical activity of a dislocation is the superposition of core defects, segregation of impurities in the core, accumulation/ depletion of impurities in the strain field

Thanks to: C Hübner, 雷海乐, T Staab, D Oriwol, R Scholz, N Engler, I Ratschinski, N Wüst, W Leitenberger, M Naumann, P Werner, G Leibiger, F Habel, U Gösele, M Jurisch

Hartmut S. Leipner

Interdisziplinäres Zentrum für Materialwissenschaften

Martin-Luther-Universität Halle–Wittenberg

References

W Shockley Phys. Rev. **91** (1953) 228. W T Read Phil. Mag. **45** (1954) 775.